Home
$$\begin{array}{cc}
f&f'\\
\hline
\alpha f+\beta g&\alpha f'+\beta g'\\
x^\alpha&\alpha x^{\alpha-1}\\
\exp&\exp\\
\sin&\cos\\
\cos&-\sin\\
\sinh&\cosh\\
\cosh&\sinh\\
\ln&\frac{1}{x}\\
fg&f'g+fg'\\
\frac{f}{g}&\frac{f'g-fg'}{g^2}\\
f(g(x))&f'(g(x))g'(x)\\
\end{array}$$
Paul's Derivatives/Integrals