Home
$$\begin{array}{cc}
f(t)&F(s)\\
\hline
\frac{1}{2\pi i}\int_{s'-i\infty}^{s'+i\infty}F(s)e^{st}ds&\int_0^\infty f(t)e^{-st}dt\\
\delta(t)&1(s)\\
u(t)&\frac{1}{s}\\
t&\frac{1}{s^2}\\
t^n&\frac{n!}{s^{n+1}}\\
\begin{pmatrix}\sin&\cos\\\sinh&\cosh\end{pmatrix}(\omega t)&\frac{\begin{pmatrix}\omega&s\end{pmatrix}}{s^2\pm \omega^2}\\
u(t-a)f(t-a)&e^{-as}F(s)\\
e^{at}f(t)&F(s-a)\\
(f\star g)(t)=\int_0^t f(t-\tau)g(\tau)d\tau&F(s)G(s)\\
f'(t)&sF(s)-f(0)\\
f^{(n)}(t)&s^nF(s)-s^\downarrow f^{(\uparrow)}(0)\\
\end{array}$$
Paul's Laplace Transforms