Home
$$\begin{array}{cc}
\text{fundamental relations}\\\hline
v^2=\mu\left(\frac{2}{r}-\frac{1}{a}\right)\stackrel\odot=\frac{\mu}{r}\\
\frac{v^2}{2}-\frac{\mu}{r}=-\frac{\mu}{2a}=\epsilon<0\\
v_\text{esc}^2\stackrel\odot=\frac{2\mu}{r}\\
r=\frac{p}{1+e\cos\theta}\\
h^2=p\mu\\
r_p=\frac{p}{1+e}\\
r_a=\frac{p}{1-e}\\
a=\frac{r_p+r_a}{2}\\
p=a(1-e^2)\\
T=2\pi\sqrt\frac{a^3}{\mu}\\
M=E-e\sin E\\
\tan\frac{\theta}{2}=\sqrt{\frac{1+e}{1-e}}\tan\frac{E}{2}\\
M=n(t-t_p)\\
\end{array}$$
$$\begin{array}{cc}
\text{constants}\\\hline
\mu_\text{earth}=398600.4418(8)\text{ km}^3\text{ s}^{-2}\\
\mu_\text{moon}=4.9048695(9)\cdot 10^3\text{ km}^3\text{ s}^{-2}\\
\mu_\text{sun}=1.32712440018(9)\cdot 10^{11}\text{ km}^3\text{ s}^{-2}\\
\end{array}$$