Home
$$\begin{array}{c}
\text{statics}\\
\hline
R=-\sum_j P_j\\
M_A=-\sum_j M_j-\sum_j r_j\times P_j\\
\end{array}$$
$$\begin{array}{c}
\text{centroids}\\
\hline
\bar x=\begin{cases}
\frac{\int_A xdA}{\int_A dA}&\text{single}\\
\frac{\sum_j\bar x_j A_j}{\sum_j A_j}&\text{collection}\\
0&\text{symmetrical}\\
\frac{h}{3}&\text{triangle}\\
\frac{4r}{3\pi}&\text{semicircle}\\
\end{cases}
\end{array}$$
$$\begin{array}{c}
\text{distributed}\\
\hline
F=\int_L fdx\\
M=\int_L r\times fdx\\
r\times F=M\\
r\stackrel{r\perp F}=\frac{M}{F}\\
\end{array}$$
$$\begin{array}{c}
\text{conventions}\\
\hline
\sigma>0,\ \varepsilon>0\text{ if tensile}\\
\gamma>0\text{ if angle decreases}\\
\end{array}$$
$$\begin{array}{c}
\text{traction}\\
\hline
t=\sigma+\tau\stackrel{[\cdot]}=\frac{F}{A}\\
t_{av}=\frac{1}{A}\int_A tdA=\frac{P}{A}\\
\end{array}$$
$$\begin{array}{c}
\text{skew plane area}\\
\hline
A'=A\sec\theta
\end{array}$$
$$\begin{array}{c}
\text{strain}\\
\hline
\varepsilon=\frac{dL'-dL}{dL}\\
\delta=\int_L\varepsilon dL\\
\gamma=-\Delta\theta=\frac{\pi}{2}-\arccos\frac{x_i'\cdot x_j'}{|x_i'||x_j'|}
\end{array}$$
$$\begin{array}{c}
\text{isotropic linear elasticity}\\
\hline
\varepsilon_i=\frac{1}{E}(\sigma_i-\nu\sum_{j\ne i}\sigma_j)\\
\gamma_{ij}=\frac{\tau_{ij}}{G}\\
[E]=\frac{F}{A}\text{ (elastic modulus)}\\
[G]=\frac{F}{A}\text{ (shear modulus)}\\
[\nu]=1\text{ (Poisson's ratio)}\\
\hline
\varepsilon_{ij}=\frac{1}{E}[(1+\nu)\sigma_{ij}-\nu\delta_{ij}\sigma_{kk}]
\end{array}$$